Electron transfer capacities and reaction kinetics of peat dissolved organic matter.
نویسندگان
چکیده
Information about electron-transfer reactions of dissolved organic matter (DOM) is lacking. We determined electron acceptor and donor capacities (EAC and EDC) of a peat humic acid and an untreated peat DOM by electrochemical reduction and reduction with metallic Zn and H2S (EAC), and by oxidation with complexed ferric iron (EDC) at pH 6.5. DOC concentrations (10-100 mg L(-1)) and pH values (4.5-8) were varied in selected experiments. EAC reached up to 6.2 mequiv x (g C)(-1) and EDC reached up to 1.52 mequiv-(g C)(-1). EDC decreased with pH and conversion of chelated to colloidal iron, and the electron-transfer capacity (ETC) was controlled by the redox potential Eh of the reactant (ETC = 1.016x Eh - 0.138; R(2) = 0.87; p = 0.05). The kinetics could be adequately described by pseudo first-order rate laws, one or two DOM pools, and time constants ranging from 2.1 x 10(-3) d-1 to 1.9 x 10(-2) d(-1) for the fast pool. Reactions were completed after 24-160 h depending on the redox couple applied. The results indicate that DOM may act as a redox buffer over electrochemical potentials ranging from -0.9 to +1.0 V.
منابع مشابه
Mobility of Pb in Sphagnum-derived peat
One important assumption in applying 210Pb-dating is that atmospherically deposited 210Pb is immobilized in the peat or sediment column. This assumption has been challenged widely, but has never been evaluated experimentally. We evaluated Pb mobility and the chemical forms in which Pb is stabilized in peat profiles by adding either soluble or particulate Pb to intact peat cores that were mainta...
متن کاملIsotope analysis of pyrolysis products from Sphagnum peat and dissolved organic matter from bog water
Elemental analyses (H, N, C, O, S), bulk isotope analyses (C, N) and C content of pyrolysis products from Sphagnum moss, underlying peat from a bog and the bog water (Hohlohsee, Black Forest, Germany) were performed to identify humi®cation processes in the early diagenesis of peat formation and to determine the origin of dissolved organic matter (DOM) in the bog lake. Atomic ratios of bulk elem...
متن کاملAbiotic reduction of 1,3-dinitrobenzene by aqueous dissolved extracellular polymeric substances produced by microorganisms.
Extracellular polymeric substances (EPS) secreted by microorganisms make up an important constituent of labile and semilabile dissolved organic matter in surface water. There are no literature reports on the capability of EPS to reduce organic pollutants. This study demonstrated that EPS could effectively reduce a probe nitroaromatic compound, 1,3-dinitrobenzene. In aqueous dissolved EPS (60.3 ...
متن کاملHalogens in pore water of peat bogs – the role of peat decomposition and dissolved organic matter
Halogens are strongly enriched in peat and peatlands and such they are one of their largest active terrestrial reservoir. The enrichment of halogens in peat is mainly attributed to the formation of organohalogens and climatically controlled humification processes. However, little is known about release of halogens from the peat substrate and the distribution of halogens in the peat pore water. ...
متن کاملRole of Dissolved Organic Matter in the Release of Chromium from Schwertmannite: Kinetics, Repartition, and Mechanisms.
Dissolved organic matter (DOM) is an important factor influencing mineral biogeochemistry, although the role of labile DOM in the release of chromium (Cr) from schwertmannite, a mineral with high surface area, is unclear. In this study, the interaction of DOM with synthetic CrO-schwertmannite was investigated to better understand the potential fate of Cr in high-DOM environments. Minerals and t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 41 1 شماره
صفحات -
تاریخ انتشار 2007